File: //usr/lib/ruby/gems/3.2.0/gems/rbs-2.8.2/core/enumerable.rbs
# <!-- rdoc-file=enum.c -->
# ## What's Here
#
# Module Enumerable provides methods that are useful to a collection class for:
# * [Querying](#module-Enumerable-label-Methods+for+Querying)
# * [Fetching](#module-Enumerable-label-Methods+for+Fetching)
# * [Searching](#module-Enumerable-label-Methods+for+Searching)
# * [Sorting](#module-Enumerable-label-Methods+for+Sorting)
# * [Iterating](#module-Enumerable-label-Methods+for+Iterating)
# * [And more....](#module-Enumerable-label-Other+Methods)
#
#
# ### Methods for Querying
#
# These methods return information about the Enumerable other than the elements
# themselves:
#
# #include?, #member?
# : Returns `true` if self == object, `false` otherwise.
# #all?
# : Returns `true` if all elements meet a specified criterion; `false`
# otherwise.
# #any?
# : Returns `true` if any element meets a specified criterion; `false`
# otherwise.
# #none?
# : Returns `true` if no element meets a specified criterion; `false`
# otherwise.
# #one?
# : Returns `true` if exactly one element meets a specified criterion; `false`
# otherwise.
# #count
# : Returns the count of elements, based on an argument or block criterion, if
# given.
# #tally
# : Returns a new Hash containing the counts of occurrences of each element.
#
#
# ### Methods for Fetching
#
# These methods return entries from the Enumerable, without modifying it:
#
# *Leading, trailing, or all elements*:
# #entries, #to_a
# : Returns all elements.
# #first
# : Returns the first element or leading elements.
# #take
# : Returns a specified number of leading elements.
# #drop
# : Returns a specified number of trailing elements.
# #take_while
# : Returns leading elements as specified by the given block.
# #drop_while
# : Returns trailing elements as specified by the given block.
#
#
# *Minimum and maximum value elements*:
# #min
# : Returns the elements whose values are smallest among the elements, as
# determined by `<=>` or a given block.
# #max
# : Returns the elements whose values are largest among the elements, as
# determined by `<=>` or a given block.
# #minmax
# : Returns a 2-element Array containing the smallest and largest elements.
# #min_by
# : Returns the smallest element, as determined by the given block.
# #max_by
# : Returns the largest element, as determined by the given block.
# #minmax_by
# : Returns the smallest and largest elements, as determined by the given
# block.
#
#
# *Groups, slices, and partitions*:
# #group_by
# : Returns a Hash that partitions the elements into groups.
# #partition
# : Returns elements partitioned into two new Arrays, as determined by the
# given block.
# #slice_after
# : Returns a new Enumerator whose entries are a partition of `self`, based
# either on a given `object` or a given block.
# #slice_before
# : Returns a new Enumerator whose entries are a partition of `self`, based
# either on a given `object` or a given block.
# #slice_when
# : Returns a new Enumerator whose entries are a partition of `self` based on
# the given block.
# #chunk
# : Returns elements organized into chunks as specified by the given block.
# #chunk_while
# : Returns elements organized into chunks as specified by the given block.
#
#
# ### Methods for Searching and Filtering
#
# These methods return elements that meet a specified criterion.
#
# #find, #detect
# : Returns an element selected by the block.
# #find_all, #filter, #select
# : Returns elements selected by the block.
# #find_index
# : Returns the index of an element selected by a given object or block.
# #reject
# : Returns elements not rejected by the block.
# #uniq
# : Returns elements that are not duplicates.
#
#
# ### Methods for Sorting
#
# These methods return elements in sorted order.
#
# #sort
# : Returns the elements, sorted by `<=>` or the given block.
# #sort_by
# : Returns the elements, sorted by the given block.
#
#
# ### Methods for Iterating
#
# #each_entry
# : Calls the block with each successive element (slightly different from
# #each).
# #each_with_index
# : Calls the block with each successive element and its index.
# #each_with_object
# : Calls the block with each successive element and a given object.
# #each_slice
# : Calls the block with successive non-overlapping slices.
# #each_cons
# : Calls the block with successive overlapping slices. (different from
# #each_slice).
# #reverse_each
# : Calls the block with each successive element, in reverse order.
#
#
# ### Other Methods
#
# #map, #collect
# : Returns objects returned by the block.
# #filter_map
# : Returns truthy objects returned by the block.
# #flat_map, #collect_concat
# : Returns flattened objects returned by the block.
# #grep
# : Returns elements selected by a given object or objects returned by a given
# block.
# #grep_v
# : Returns elements selected by a given object or objects returned by a given
# block.
# #reduce, #inject
# : Returns the object formed by combining all elements.
# #sum
# : Returns the sum of the elements, using method +++.
# #zip
# : Combines each element with elements from other enumerables; returns the
# n-tuples or calls the block with each.
# #cycle
# : Calls the block with each element, cycling repeatedly.
#
#
# ## Usage
#
# To use module Enumerable in a collection class:
#
# * Include it:
#
# include Enumerable
#
# * Implement method `#each` which must yield successive elements of the
# collection. The method will be called by almost any Enumerable method.
#
#
# Example:
#
# class Foo
# include Enumerable
# def each
# yield 1
# yield 1, 2
# yield
# end
# end
# Foo.new.each_entry{ |element| p element }
#
# Output:
#
# 1
# [1, 2]
# nil
#
# ## Enumerable in Ruby Core Classes
# Some Ruby classes include Enumerable:
# * Array
# * Dir
# * Hash
# * IO
# * Range
# * Set
# * Struct
#
# Virtually all methods in Enumerable call method `#each` in the including
# class:
# * `Hash#each` yields the next key-value pair as a 2-element Array.
# * `Struct#each` yields the next name-value pair as a 2-element Array.
# * For the other classes above, `#each` yields the next object from the
# collection.
#
#
# ## About the Examples
# The example code snippets for the Enumerable methods:
# * Always show the use of one or more Array-like classes (often Array
# itself).
# * Sometimes show the use of a Hash-like class. For some methods, though, the
# usage would not make sense, and so it is not shown. Example: #tally would
# find exactly one of each Hash entry.
#
module Enumerable[unchecked out Elem] : _Each[Elem]
# <!--
# rdoc-file=enum.c
# - all? -> true or false
# - all?(pattern) -> true or false
# - all? {|element| ... } -> true or false
# -->
# Returns whether every element meets a given criterion.
#
# With no argument and no block, returns whether every element is truthy:
#
# (1..4).all? # => true
# %w[a b c d].all? # => true
# [1, 2, nil].all? # => false
# ['a','b', false].all? # => false
# [].all? # => true
#
# With argument `pattern` and no block, returns whether for each element
# `element`, `pattern === element`:
#
# (1..4).all?(Integer) # => true
# (1..4).all?(Numeric) # => true
# (1..4).all?(Float) # => false
# %w[bar baz bat bam].all?(/ba/) # => true
# %w[bar baz bat bam].all?(/bar/) # => false
# %w[bar baz bat bam].all?('ba') # => false
# {foo: 0, bar: 1, baz: 2}.all?(Array) # => true
# {foo: 0, bar: 1, baz: 2}.all?(Hash) # => false
# [].all?(Integer) # => true
#
# With a block given, returns whether the block returns a truthy value for every
# element:
#
# (1..4).all? {|element| element < 5 } # => true
# (1..4).all? {|element| element < 4 } # => false
# {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 3 } # => true
# {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 2 } # => false
#
# Related: #any?, #none? #one?.
#
def all?: () -> bool
| () { (Elem) -> boolish } -> bool
# <!--
# rdoc-file=enum.c
# - any? -> true or false
# - any?(pattern) -> true or false
# - any? {|element| ... } -> true or false
# -->
# Returns whether any element meets a given criterion.
#
# With no argument and no block, returns whether any element is truthy:
#
# (1..4).any? # => true
# %w[a b c d].any? # => true
# [1, false, nil].any? # => true
# [].any? # => false
#
# With argument `pattern` and no block, returns whether for any element
# `element`, `pattern === element`:
#
# [nil, false, 0].any?(Integer) # => true
# [nil, false, 0].any?(Numeric) # => true
# [nil, false, 0].any?(Float) # => false
# %w[bar baz bat bam].any?(/m/) # => true
# %w[bar baz bat bam].any?(/foo/) # => false
# %w[bar baz bat bam].any?('ba') # => false
# {foo: 0, bar: 1, baz: 2}.any?(Array) # => true
# {foo: 0, bar: 1, baz: 2}.any?(Hash) # => false
# [].any?(Integer) # => false
#
# With a block given, returns whether the block returns a truthy value for any
# element:
#
# (1..4).any? {|element| element < 2 } # => true
# (1..4).any? {|element| element < 1 } # => false
# {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true
# {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false
#
# Related: #all?, #none?, #one?.
#
def any?: () -> bool
| () { (Elem) -> boolish } -> bool
# <!--
# rdoc-file=enum.c
# - map {|element| ... } -> array
# - map -> enumerator
# -->
# Returns an array of objects returned by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of the objects returned by the block:
#
# (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
# {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
#
# With no block given, returns an Enumerator.
#
def collect: [U] () { (Elem arg0) -> U } -> ::Array[U]
| () -> ::Enumerator[Elem, ::Array[untyped]]
# <!-- rdoc-file=enum.c -->
# Returns an array of flattened objects returned by the block.
#
# With a block given, calls the block with successive elements; returns a
# flattened array of objects returned by the block:
#
# [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3]
# [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3]
# [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
# {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
#
# With no block given, returns an Enumerator.
#
# Alias: #collect_concat.
#
def collect_concat: [U] () { (Elem) -> (::Array[U] | U) } -> ::Array[U]
| () -> ::Enumerator[Elem, ::Array[untyped]]
# <!--
# rdoc-file=enum.c
# - compact -> array
# -->
# Returns an array of all non-`nil` elements:
#
# a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil]
# a.compact # => [0, "a", false, false, "a", 0]
#
def compact: () -> Array[Elem]
# <!--
# rdoc-file=enum.c
# - count -> integer
# - count(object) -> integer
# - count {|element| ... } -> integer
# -->
# Returns the count of elements, based on an argument or block criterion, if
# given.
#
# With no argument and no block given, returns the number of elements:
#
# [0, 1, 2].count # => 3
# {foo: 0, bar: 1, baz: 2}.count # => 3
#
# With argument `object` given, returns the number of elements that are `==` to
# `object`:
#
# [0, 1, 2, 1].count(1) # => 2
#
# With a block given, calls the block with each element and returns the number
# of elements for which the block returns a truthy value:
#
# [0, 1, 2, 3].count {|element| element < 2} # => 2
# {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2
#
def count: () -> Integer
| (Elem) -> Integer
| () { (Elem) -> boolish } -> Integer
# <!--
# rdoc-file=enum.c
# - cycle(n = nil) {|element| ...} -> nil
# - cycle(n = nil) -> enumerator
# -->
# When called with positive integer argument `n` and a block, calls the block
# with each element, then does so again, until it has done so `n` times; returns
# `nil`:
#
# a = []
# (1..4).cycle(3) {|element| a.push(element) } # => nil
# a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
# a = []
# ('a'..'d').cycle(2) {|element| a.push(element) }
# a # => ["a", "b", "c", "d", "a", "b", "c", "d"]
# a = []
# {foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) }
# a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]]
#
# If count is zero or negative, does not call the block.
#
# When called with a block and `n` is `nil`, cycles forever.
#
# When no block is given, returns an Enumerator.
#
def cycle: (?Integer n) { (Elem arg0) -> untyped } -> NilClass
| (?Integer n) -> ::Enumerator[Elem, NilClass]
# <!-- rdoc-file=enum.c -->
# Returns the first element for which the block returns a truthy value.
#
# With a block given, calls the block with successive elements of the
# collection; returns the first element for which the block returns a truthy
# value:
#
# (0..9).find {|element| element > 2} # => 3
#
# If no such element is found, calls `if_none_proc` and returns its return
# value.
#
# (0..9).find(proc {false}) {|element| element > 12} # => false
# {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
# {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
#
# With no block given, returns an Enumerator.
#
def detect: (?Proc ifnone) { (Elem) -> boolish } -> Elem?
| (?Proc ifnone) -> ::Enumerator[Elem, Elem?]
# <!--
# rdoc-file=enum.c
# - drop(n) -> array
# -->
# For positive integer `n`, returns an array containing all but the first `n`
# elements:
#
# r = (1..4)
# r.drop(3) # => [4]
# r.drop(2) # => [3, 4]
# r.drop(1) # => [2, 3, 4]
# r.drop(0) # => [1, 2, 3, 4]
# r.drop(50) # => []
#
# h = {foo: 0, bar: 1, baz: 2, bat: 3}
# h.drop(2) # => [[:baz, 2], [:bat, 3]]
#
def drop: (Integer n) -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - drop_while {|element| ... } -> array
# - drop_while -> enumerator
# -->
# Calls the block with successive elements as long as the block returns a truthy
# value; returns an array of all elements after that point:
#
# (1..4).drop_while{|i| i < 3 } # => [3, 4]
# h = {foo: 0, bar: 1, baz: 2}
# a = h.drop_while{|element| key, value = *element; value < 2 }
# a # => [[:baz, 2]]
#
# With no block given, returns an Enumerator.
#
def drop_while: () { (Elem) -> boolish } -> ::Array[Elem]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!--
# rdoc-file=enum.c
# - each_cons(n) { ... } -> self
# - each_cons(n) -> enumerator
# -->
# Calls the block with each successive overlapped `n`-tuple of elements; returns
# `self`:
#
# a = []
# (1..5).each_cons(3) {|element| a.push(element) }
# a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
#
# a = []
# h = {foo: 0, bar: 1, baz: 2, bam: 3}
# h.each_cons(2) {|element| a.push(element) }
# a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]]
#
# With no block given, returns an Enumerator.
#
def each_cons: (Integer n) { (::Array[Elem]) -> void } -> self
| (Integer n) -> ::Enumerator[::Array[Elem], self]
# <!--
# rdoc-file=enum.c
# - each_with_index(*args) {|element, i| ..... } -> self
# - each_with_index(*args) -> enumerator
# -->
# With a block given, calls the block with each element and its index; returns
# `self`:
#
# h = {}
# (1..4).each_with_index {|element, i| h[element] = i } # => 1..4
# h # => {1=>0, 2=>1, 3=>2, 4=>3}
#
# h = {}
# %w[a b c d].each_with_index {|element, i| h[element] = i }
# # => ["a", "b", "c", "d"]
# h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3}
#
# a = []
# h = {foo: 0, bar: 1, baz: 2}
# h.each_with_index {|element, i| a.push([i, element]) }
# # => {:foo=>0, :bar=>1, :baz=>2}
# a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
#
# With no block given, returns an Enumerator.
#
def each_with_index: () { (Elem, Integer index) -> untyped } -> self
| () -> ::Enumerator[[ Elem, Integer ], self]
# <!--
# rdoc-file=enum.c
# - each_with_object(object) { |(*args), memo_object| ... } -> object
# - each_with_object(object) -> enumerator
# -->
# Calls the block once for each element, passing both the element and the given
# object:
#
# (1..4).each_with_object([]) {|i, a| a.push(i**2) } # => [1, 4, 9, 16]
# h.each_with_object({}) {|element, h| k, v = *element; h[v] = k }
# # => {0=>:foo, 1=>:bar, 2=>:baz}
#
# With no block given, returns an Enumerator.
#
def each_with_object: [U] (U obj) { (Elem, U obj) -> untyped } -> U
| [U] (U obj) -> ::Enumerator[[ Elem, U ], U]
# <!-- rdoc-file=enum.c -->
# Returns an array containing the items in `self`:
#
# (0..4).to_a # => [0, 1, 2, 3, 4]
#
# Enumerable#entries is an alias for Enumerable#to_a.
#
def entries: () -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - select {|element| ... } -> array
# - select -> enumerator
# -->
# Returns an array containing elements selected by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of those elements for which the block returns a truthy value:
#
# (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
# a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
# a # => {:bar=>1, :baz=>2}
#
# With no block given, returns an Enumerator.
#
# Related: #reject.
#
def find_all: () { (Elem) -> boolish } -> ::Array[Elem]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!-- rdoc-file=enum.c -->
# Returns an array containing elements selected by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of those elements for which the block returns a truthy value:
#
# (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
# a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
# a # => {:bar=>1, :baz=>2}
#
# With no block given, returns an Enumerator.
#
# Related: #reject.
#
alias select find_all
# <!-- rdoc-file=enum.c -->
# Returns an array containing elements selected by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of those elements for which the block returns a truthy value:
#
# (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
# a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
# a # => {:bar=>1, :baz=>2}
#
# With no block given, returns an Enumerator.
#
# Related: #reject.
#
alias filter find_all
# <!--
# rdoc-file=enum.c
# - find_index(object) -> integer or nil
# - find_index {|element| ... } -> integer or nil
# - find_index -> enumerator
# -->
# Returns the index of the first element that meets a specified criterion, or
# `nil` if no such element is found.
#
# With argument `object` given, returns the index of the first element that is
# `==` `object`:
#
# ['a', 'b', 'c', 'b'].find_index('b') # => 1
#
# With a block given, calls the block with successive elements; returns the
# first element for which the block returns a truthy value:
#
# ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1
# {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
#
# With no argument and no block given, returns an Enumerator.
#
def find_index: (untyped value) -> Integer?
| () { (Elem) -> boolish } -> Integer?
| () -> ::Enumerator[Elem, Integer?]
# <!--
# rdoc-file=enum.c
# - first -> element or nil
# - first(n) -> array
# -->
# Returns the first element or elements.
#
# With no argument, returns the first element, or `nil` if there is none:
#
# (1..4).first # => 1
# %w[a b c].first # => "a"
# {foo: 1, bar: 1, baz: 2}.first # => [:foo, 1]
# [].first # => nil
#
# With integer argument `n`, returns an array containing the first `n` elements
# that exist:
#
# (1..4).first(2) # => [1, 2]
# %w[a b c d].first(3) # => ["a", "b", "c"]
# %w[a b c d].first(50) # => ["a", "b", "c", "d"]
# {foo: 1, bar: 1, baz: 2}.first(2) # => [[:foo, 1], [:bar, 1]]
# [].first(2) # => []
#
def first: () -> Elem?
| (_ToInt n) -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - grep(pattern) -> array
# - grep(pattern) {|element| ... } -> array
# -->
# Returns an array of objects based elements of `self` that match the given
# pattern.
#
# With no block given, returns an array containing each element for which
# `pattern === element` is `true`:
#
# a = ['foo', 'bar', 'car', 'moo']
# a.grep(/ar/) # => ["bar", "car"]
# (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8]
# ['a', 'b', 0, 1].grep(Integer) # => [0, 1]
#
# With a block given, calls the block with each matching element and returns an
# array containing each object returned by the block:
#
# a = ['foo', 'bar', 'car', 'moo']
# a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"]
#
# Related: #grep_v.
#
def grep: (untyped arg0) -> ::Array[Elem]
| [U] (untyped arg0) { (Elem arg0) -> U } -> ::Array[U]
# <!--
# rdoc-file=enum.c
# - grep_v(pattern) -> array
# - grep_v(pattern) {|element| ... } -> array
# -->
# Returns an array of objects based on elements of `self` that *don't* match the
# given pattern.
#
# With no block given, returns an array containing each element for which
# `pattern === element` is `false`:
#
# a = ['foo', 'bar', 'car', 'moo']
# a.grep_v(/ar/) # => ["foo", "moo"]
# (1..10).grep_v(3..8) # => [1, 2, 9, 10]
# ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"]
#
# With a block given, calls the block with each non-matching element and returns
# an array containing each object returned by the block:
#
# a = ['foo', 'bar', 'car', 'moo']
# a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"]
#
# Related: #grep.
#
def grep_v: (untyped) -> ::Array[Elem]
| [U] (untyped) { (Elem) -> U } -> ::Array[U]
# <!--
# rdoc-file=enum.c
# - group_by {|element| ... } -> hash
# - group_by -> enumerator
# -->
# With a block given returns a hash:
#
# * Each key is a return value from the block.
# * Each value is an array of those elements for which the block returned that
# key.
#
#
# Examples:
#
# g = (1..6).group_by {|i| i%3 }
# g # => {1=>[1, 4], 2=>[2, 5], 0=>[3, 6]}
# h = {foo: 0, bar: 1, baz: 0, bat: 1}
# g = h.group_by {|key, value| value }
# g # => {0=>[[:foo, 0], [:baz, 0]], 1=>[[:bar, 1], [:bat, 1]]}
#
# With no block given, returns an Enumerator.
#
def group_by: [U] () { (Elem arg0) -> U } -> ::Hash[U, ::Array[Elem]]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!-- rdoc-file=enum.c -->
# Returns whether for any element `object == element`:
#
# (1..4).include?(2) # => true
# (1..4).include?(5) # => false
# (1..4).include?('2') # => false
# %w[a b c d].include?('b') # => true
# %w[a b c d].include?('2') # => false
# {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true
# {foo: 0, bar: 1, baz: 2}.include?('foo') # => false
# {foo: 0, bar: 1, baz: 2}.include?(0) # => false
#
# Enumerable#member? is an alias for Enumerable#include?.
#
def include?: (Elem arg0) -> bool
# <!--
# rdoc-file=enum.c
# - inject(symbol) -> object
# - inject(initial_operand, symbol) -> object
# - inject {|memo, operand| ... } -> object
# - inject(initial_operand) {|memo, operand| ... } -> object
# -->
# Returns an object formed from operands via either:
#
# * A method named by `symbol`.
# * A block to which each operand is passed.
#
#
# With method-name argument `symbol`, combines operands using the method:
#
# # Sum, without initial_operand.
# (1..4).inject(:+) # => 10
# # Sum, with initial_operand.
# (1..4).inject(10, :+) # => 20
#
# With a block, passes each operand to the block:
#
# # Sum of squares, without initial_operand.
# (1..4).inject {|sum, n| sum + n*n } # => 30
# # Sum of squares, with initial_operand.
# (1..4).inject(2) {|sum, n| sum + n*n } # => 32
#
# **Operands**
#
# If argument `initial_operand` is not given, the operands for `inject` are
# simply the elements of `self`. Example calls and their operands:
#
# `(1..4).inject(:+)`
# : `[1, 2, 3, 4]`.
#
# `(1...4).inject(:+)`
# : `[1, 2, 3]`.
#
# `('a'..'d').inject(:+)`
# : `['a', 'b', 'c', 'd']`.
#
# `('a'...'d').inject(:+)`
# : `['a', 'b', 'c']`.
#
#
#
# Examples with first operand (which is `self.first`) of various types:
#
# # Integer.
# (1..4).inject(:+) # => 10
# # Float.
# [1.0, 2, 3, 4].inject(:+) # => 10.0
# # Character.
# ('a'..'d').inject(:+) # => "abcd"
# # Complex.
# [Complex(1, 2), 3, 4].inject(:+) # => (8+2i)
#
# If argument `initial_operand` is given, the operands for `inject` are that
# value plus the elements of `self`. Example calls their operands:
#
# `(1..4).inject(10, :+)`
# : `[10, 1, 2, 3, 4]`.
#
# `(1...4).inject(10, :+)`
# : `[10, 1, 2, 3]`.
#
# `('a'..'d').inject('e', :+)`
# : `['e', 'a', 'b', 'c', 'd']`.
#
# `('a'...'d').inject('e', :+)`
# : `['e', 'a', 'b', 'c']`.
#
#
#
# Examples with `initial_operand` of various types:
#
# # Integer.
# (1..4).inject(2, :+) # => 12
# # Float.
# (1..4).inject(2.0, :+) # => 12.0
# # String.
# ('a'..'d').inject('foo', :+) # => "fooabcd"
# # Array.
# %w[a b c].inject(['x'], :push) # => ["x", "a", "b", "c"]
# # Complex.
# (1..4).inject(Complex(2, 2), :+) # => (12+2i)
#
# **Combination by Given \Method**
#
# If the method-name argument `symbol` is given, the operands are combined by
# that method:
#
# * The first and second operands are combined.
# * That result is combined with the third operand.
# * That result is combined with the fourth operand.
# * And so on.
#
#
# The return value from `inject` is the result of the last combination.
#
# This call to `inject` computes the sum of the operands:
#
# (1..4).inject(:+) # => 10
#
# Examples with various methods:
#
# # Integer addition.
# (1..4).inject(:+) # => 10
# # Integer multiplication.
# (1..4).inject(:*) # => 24
# # Character range concatenation.
# ('a'..'d').inject('', :+) # => "abcd"
# # String array concatenation.
# %w[foo bar baz].inject('', :+) # => "foobarbaz"
# # Hash update.
# h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update)
# h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
# # Hash conversion to nested arrays.
# h = {foo: 0, bar: 1}.inject([], :push)
# h # => [[:foo, 0], [:bar, 1]]
#
# **Combination by Given Block**
#
# If a block is given, the operands are passed to the block:
#
# * The first call passes the first and second operands.
# * The second call passes the result of the first call, along with the third
# operand.
# * The third call passes the result of the second call, along with the fourth
# operand.
# * And so on.
#
#
# The return value from `inject` is the return value from the last block call.
#
# This call to `inject` gives a block that writes the memo and element, and also
# sums the elements:
#
# (1..4).inject do |memo, element|
# p "Memo: #{memo}; element: #{element}"
# memo + element
# end # => 10
#
# Output:
#
# "Memo: 1; element: 2"
# "Memo: 3; element: 3"
# "Memo: 6; element: 4"
#
# Enumerable#reduce is an alias for Enumerable#inject.
#
def inject: (untyped init, Symbol method) -> untyped
| (Symbol method) -> untyped
| [A] (A initial) { (A, Elem) -> A } -> A
| () { (Elem, Elem) -> Elem } -> Elem
# <!--
# rdoc-file=enum.c
# - max -> element
# - max(n) -> array
# - max {|a, b| ... } -> element
# - max(n) {|a, b| ... } -> array
# -->
# Returns the element with the maximum element according to a given criterion.
# The ordering of equal elements is indeterminate and may be unstable.
#
# With no argument and no block, returns the maximum element, using the
# elements' own method `<=>` for comparison:
#
# (1..4).max # => 4
# (-4..-1).max # => -1
# %w[d c b a].max # => "d"
# {foo: 0, bar: 1, baz: 2}.max # => [:foo, 0]
# [].max # => nil
#
# With positive integer argument `n` given, and no block, returns an array
# containing the first `n` maximum elements that exist:
#
# (1..4).max(2) # => [4, 3]
# (-4..-1).max(2) # => [-1, -2]
# %w[d c b a].max(2) # => ["d", "c"]
# {foo: 0, bar: 1, baz: 2}.max(2) # => [[:foo, 0], [:baz, 2]]
# [].max(2) # => []
#
# With a block given, the block determines the maximum elements. The block is
# called with two elements `a` and `b`, and must return:
#
# * A negative integer if `a < b`.
# * Zero if `a == b`.
# * A positive integer if `a > b`.
#
#
# With a block given and no argument, returns the maximum element as determined
# by the block:
#
# %w[xxx x xxxx xx].max {|a, b| a.size <=> b.size } # => "xxxx"
# h = {foo: 0, bar: 1, baz: 2}
# h.max {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:baz, 2]
# [].max {|a, b| a <=> b } # => nil
#
# With a block given and positive integer argument `n` given, returns an array
# containing the first `n` maximum elements that exist, as determined by the
# block.
#
# %w[xxx x xxxx xx].max(2) {|a, b| a.size <=> b.size } # => ["xxxx", "xxx"]
# h = {foo: 0, bar: 1, baz: 2}
# h.max(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
# # => [[:baz, 2], [:bar, 1]]
# [].max(2) {|a, b| a <=> b } # => []
#
# Related: #min, #minmax, #max_by.
#
def max: () -> Elem?
| () { (Elem arg0, Elem arg1) -> Integer } -> Elem?
| (Integer arg0) -> ::Array[Elem]
| (Integer arg0) { (Elem arg0, Elem arg1) -> Integer } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - max_by {|element| ... } -> element
# - max_by(n) {|element| ... } -> array
# - max_by -> enumerator
# - max_by(n) -> enumerator
# -->
# Returns the elements for which the block returns the maximum values.
#
# With a block given and no argument, returns the element for which the block
# returns the maximum value:
#
# (1..4).max_by {|element| -element } # => 1
# %w[a b c d].max_by {|element| -element.ord } # => "a"
# {foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0]
# [].max_by {|element| -element } # => nil
#
# With a block given and positive integer argument `n` given, returns an array
# containing the `n` elements for which the block returns maximum values:
#
# (1..4).max_by(2) {|element| -element }
# # => [1, 2]
# %w[a b c d].max_by(2) {|element| -element.ord }
# # => ["a", "b"]
# {foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value }
# # => [[:foo, 0], [:bar, 1]]
# [].max_by(2) {|element| -element }
# # => []
#
# Returns an Enumerator if no block is given.
#
# Related: #max, #minmax, #min_by.
#
def max_by: () -> ::Enumerator[Elem, Elem?]
| () { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> Elem?
| (Integer arg0) -> ::Enumerator[Elem, ::Array[Elem]]
| (Integer arg0) { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - min -> element
# - min(n) -> array
# - min {|a, b| ... } -> element
# - min(n) {|a, b| ... } -> array
# -->
# Returns the element with the minimum element according to a given criterion.
# The ordering of equal elements is indeterminate and may be unstable.
#
# With no argument and no block, returns the minimum element, using the
# elements' own method `<=>` for comparison:
#
# (1..4).min # => 1
# (-4..-1).min # => -4
# %w[d c b a].min # => "a"
# {foo: 0, bar: 1, baz: 2}.min # => [:bar, 1]
# [].min # => nil
#
# With positive integer argument `n` given, and no block, returns an array
# containing the first `n` minimum elements that exist:
#
# (1..4).min(2) # => [1, 2]
# (-4..-1).min(2) # => [-4, -3]
# %w[d c b a].min(2) # => ["a", "b"]
# {foo: 0, bar: 1, baz: 2}.min(2) # => [[:bar, 1], [:baz, 2]]
# [].min(2) # => []
#
# With a block given, the block determines the minimum elements. The block is
# called with two elements `a` and `b`, and must return:
#
# * A negative integer if `a < b`.
# * Zero if `a == b`.
# * A positive integer if `a > b`.
#
#
# With a block given and no argument, returns the minimum element as determined
# by the block:
#
# %w[xxx x xxxx xx].min {|a, b| a.size <=> b.size } # => "x"
# h = {foo: 0, bar: 1, baz: 2}
# h.min {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:foo, 0]
# [].min {|a, b| a <=> b } # => nil
#
# With a block given and positive integer argument `n` given, returns an array
# containing the first `n` minimum elements that exist, as determined by the
# block.
#
# %w[xxx x xxxx xx].min(2) {|a, b| a.size <=> b.size } # => ["x", "xx"]
# h = {foo: 0, bar: 1, baz: 2}
# h.min(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
# # => [[:foo, 0], [:bar, 1]]
# [].min(2) {|a, b| a <=> b } # => []
#
# Related: #min_by, #minmax, #max.
#
def min: () -> Elem?
| () { (Elem arg0, Elem arg1) -> Integer } -> Elem?
| (Integer arg0) -> ::Array[Elem]
| (Integer arg0) { (Elem arg0, Elem arg1) -> Integer } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - min_by {|element| ... } -> element
# - min_by(n) {|element| ... } -> array
# - min_by -> enumerator
# - min_by(n) -> enumerator
# -->
# Returns the elements for which the block returns the minimum values.
#
# With a block given and no argument, returns the element for which the block
# returns the minimum value:
#
# (1..4).min_by {|element| -element } # => 4
# %w[a b c d].min_by {|element| -element.ord } # => "d"
# {foo: 0, bar: 1, baz: 2}.min_by {|key, value| -value } # => [:baz, 2]
# [].min_by {|element| -element } # => nil
#
# With a block given and positive integer argument `n` given, returns an array
# containing the `n` elements for which the block returns minimum values:
#
# (1..4).min_by(2) {|element| -element }
# # => [4, 3]
# %w[a b c d].min_by(2) {|element| -element.ord }
# # => ["d", "c"]
# {foo: 0, bar: 1, baz: 2}.min_by(2) {|key, value| -value }
# # => [[:baz, 2], [:bar, 1]]
# [].min_by(2) {|element| -element }
# # => []
#
# Returns an Enumerator if no block is given.
#
# Related: #min, #minmax, #max_by.
#
def min_by: () -> ::Enumerator[Elem, Elem?]
| () { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> Elem?
| (Integer arg0) -> ::Enumerator[Elem, ::Array[Elem]]
| (Integer arg0) { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - minmax -> [minimum, maximum]
# - minmax {|a, b| ... } -> [minimum, maximum]
# -->
# Returns a 2-element array containing the minimum and maximum elements
# according to a given criterion. The ordering of equal elements is
# indeterminate and may be unstable.
#
# With no argument and no block, returns the minimum and maximum elements, using
# the elements' own method `<=>` for comparison:
#
# (1..4).minmax # => [1, 4]
# (-4..-1).minmax # => [-4, -1]
# %w[d c b a].minmax # => ["a", "d"]
# {foo: 0, bar: 1, baz: 2}.minmax # => [[:bar, 1], [:foo, 0]]
# [].minmax # => [nil, nil]
#
# With a block given, returns the minimum and maximum elements as determined by
# the block:
#
# %w[xxx x xxxx xx].minmax {|a, b| a.size <=> b.size } # => ["x", "xxxx"]
# h = {foo: 0, bar: 1, baz: 2}
# h.minmax {|pair1, pair2| pair1[1] <=> pair2[1] }
# # => [[:foo, 0], [:baz, 2]]
# [].minmax {|a, b| a <=> b } # => [nil, nil]
#
# Related: #min, #max, #minmax_by.
#
def minmax: () -> [ Elem?, Elem? ]
| () { (Elem arg0, Elem arg1) -> Integer } -> [ Elem?, Elem? ]
# <!--
# rdoc-file=enum.c
# - minmax_by {|element| ... } -> [minimum, maximum]
# - minmax_by -> enumerator
# -->
# Returns a 2-element array containing the elements for which the block returns
# minimum and maximum values:
#
# (1..4).minmax_by {|element| -element }
# # => [4, 1]
# %w[a b c d].minmax_by {|element| -element.ord }
# # => ["d", "a"]
# {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value }
# # => [[:baz, 2], [:foo, 0]]
# [].minmax_by {|element| -element }
# # => [nil, nil]
#
# Returns an Enumerator if no block is given.
#
# Related: #max_by, #minmax, #min_by.
#
def minmax_by: () -> [ Elem?, Elem? ]
| () { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> [ Elem?, Elem? ]
# <!--
# rdoc-file=enum.c
# - none? -> true or false
# - none?(pattern) -> true or false
# - none? {|element| ... } -> true or false
# -->
# Returns whether no element meets a given criterion.
#
# With no argument and no block, returns whether no element is truthy:
#
# (1..4).none? # => false
# [nil, false].none? # => true
# {foo: 0}.none? # => false
# {foo: 0, bar: 1}.none? # => false
# [].none? # => true
#
# With argument `pattern` and no block, returns whether for no element
# `element`, `pattern === element`:
#
# [nil, false, 1.1].none?(Integer) # => true
# %w[bar baz bat bam].none?(/m/) # => false
# %w[bar baz bat bam].none?(/foo/) # => true
# %w[bar baz bat bam].none?('ba') # => true
# {foo: 0, bar: 1, baz: 2}.none?(Hash) # => true
# {foo: 0}.none?(Array) # => false
# [].none?(Integer) # => true
#
# With a block given, returns whether the block returns a truthy value for no
# element:
#
# (1..4).none? {|element| element < 1 } # => true
# (1..4).none? {|element| element < 2 } # => false
# {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 0 } # => true
# {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 1 } # => false
#
# Related: #one?, #all?, #any?.
#
def none?: () -> bool
| () { (Elem) -> boolish } -> bool
# <!--
# rdoc-file=enum.c
# - one? -> true or false
# - one?(pattern) -> true or false
# - one? {|element| ... } -> true or false
# -->
# Returns whether exactly one element meets a given criterion.
#
# With no argument and no block, returns whether exactly one element is truthy:
#
# (1..1).one? # => true
# [1, nil, false].one? # => true
# (1..4).one? # => false
# {foo: 0}.one? # => true
# {foo: 0, bar: 1}.one? # => false
# [].one? # => false
#
# With argument `pattern` and no block, returns whether for exactly one element
# `element`, `pattern === element`:
#
# [nil, false, 0].one?(Integer) # => true
# [nil, false, 0].one?(Numeric) # => true
# [nil, false, 0].one?(Float) # => false
# %w[bar baz bat bam].one?(/m/) # => true
# %w[bar baz bat bam].one?(/foo/) # => false
# %w[bar baz bat bam].one?('ba') # => false
# {foo: 0, bar: 1, baz: 2}.one?(Array) # => false
# {foo: 0}.one?(Array) # => true
# [].one?(Integer) # => false
#
# With a block given, returns whether the block returns a truthy value for
# exactly one element:
#
# (1..4).one? {|element| element < 2 } # => true
# (1..4).one? {|element| element < 1 } # => false
# {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 1 } # => true
# {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 2 } # => false
#
# Related: #none?, #all?, #any?.
#
def one?: () -> bool
| () { (Elem) -> boolish } -> bool
# <!--
# rdoc-file=enum.c
# - partition {|element| ... } -> [true_array, false_array]
# - partition -> enumerator
# -->
# With a block given, returns an array of two arrays:
#
# * The first having those elements for which the block returns a truthy
# value.
# * The other having all other elements.
#
#
# Examples:
#
# p = (1..4).partition {|i| i.even? }
# p # => [[2, 4], [1, 3]]
# p = ('a'..'d').partition {|c| c < 'c' }
# p # => [["a", "b"], ["c", "d"]]
# h = {foo: 0, bar: 1, baz: 2, bat: 3}
# p = h.partition {|key, value| key.start_with?('b') }
# p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]]
# p = h.partition {|key, value| value < 2 }
# p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]
#
# With no block given, returns an Enumerator.
#
# Related: Enumerable#group_by.
#
def partition: () { (Elem) -> boolish } -> [ ::Array[Elem], ::Array[Elem] ]
| () -> ::Enumerator[Elem, [ ::Array[Elem], ::Array[Elem] ]]
# <!--
# rdoc-file=enum.c
# - reject {|element| ... } -> array
# - reject -> enumerator
# -->
# Returns an array of objects rejected by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of those elements for which the block returns `nil` or `false`:
#
# (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9]
# {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2}
#
# When no block given, returns an Enumerator.
#
# Related: #select.
#
def reject: () { (Elem) -> boolish } -> ::Array[Elem]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!--
# rdoc-file=enum.c
# - reverse_each(*args) {|element| ... } -> self
# - reverse_each(*args) -> enumerator
# -->
# With a block given, calls the block with each element, but in reverse order;
# returns `self`:
#
# a = []
# (1..4).reverse_each {|element| a.push(-element) } # => 1..4
# a # => [-4, -3, -2, -1]
#
# a = []
# %w[a b c d].reverse_each {|element| a.push(element) }
# # => ["a", "b", "c", "d"]
# a # => ["d", "c", "b", "a"]
#
# a = []
# h.reverse_each {|element| a.push(element) }
# # => {:foo=>0, :bar=>1, :baz=>2}
# a # => [[:baz, 2], [:bar, 1], [:foo, 0]]
#
# With no block given, returns an Enumerator.
#
def reverse_each: () { (Elem arg0) -> untyped } -> void
| () -> ::Enumerator[Elem, void]
# <!--
# rdoc-file=enum.c
# - sort -> array
# - sort {|a, b| ... } -> array
# -->
# Returns an array containing the sorted elements of `self`. The ordering of
# equal elements is indeterminate and may be unstable.
#
# With no block given, the sort compares using the elements' own method `<=>`:
#
# %w[b c a d].sort # => ["a", "b", "c", "d"]
# {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]]
#
# With a block given, comparisons in the block determine the ordering. The block
# is called with two elements `a` and `b`, and must return:
#
# * A negative integer if `a < b`.
# * Zero if `a == b`.
# * A positive integer if `a > b`.
#
#
# Examples:
#
# a = %w[b c a d]
# a.sort {|a, b| b <=> a } # => ["d", "c", "b", "a"]
# h = {foo: 0, bar: 1, baz: 2}
# h.sort {|a, b| b <=> a } # => [[:foo, 0], [:baz, 2], [:bar, 1]]
#
# See also #sort_by. It implements a Schwartzian transform which is useful when
# key computation or comparison is expensive.
#
def sort: () -> ::Array[Elem]
| () { (Elem arg0, Elem arg1) -> Integer } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - sort_by {|element| ... } -> array
# - sort_by -> enumerator
# -->
# With a block given, returns an array of elements of `self`, sorted according
# to the value returned by the block for each element. The ordering of equal
# elements is indeterminate and may be unstable.
#
# Examples:
#
# a = %w[xx xxx x xxxx]
# a.sort_by {|s| s.size } # => ["x", "xx", "xxx", "xxxx"]
# a.sort_by {|s| -s.size } # => ["xxxx", "xxx", "xx", "x"]
# h = {foo: 2, bar: 1, baz: 0}
# h.sort_by{|key, value| value } # => [[:baz, 0], [:bar, 1], [:foo, 2]]
# h.sort_by{|key, value| key } # => [[:bar, 1], [:baz, 0], [:foo, 2]]
#
# With no block given, returns an Enumerator.
#
# The current implementation of #sort_by generates an array of tuples containing
# the original collection element and the mapped value. This makes #sort_by
# fairly expensive when the keysets are simple.
#
# require 'benchmark'
#
# a = (1..100000).map { rand(100000) }
#
# Benchmark.bm(10) do |b|
# b.report("Sort") { a.sort }
# b.report("Sort by") { a.sort_by { |a| a } }
# end
#
# *produces:*
#
# user system total real
# Sort 0.180000 0.000000 0.180000 ( 0.175469)
# Sort by 1.980000 0.040000 2.020000 ( 2.013586)
#
# However, consider the case where comparing the keys is a non-trivial
# operation. The following code sorts some files on modification time using the
# basic #sort method.
#
# files = Dir["*"]
# sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
# sorted #=> ["mon", "tues", "wed", "thurs"]
#
# This sort is inefficient: it generates two new File objects during every
# comparison. A slightly better technique is to use the Kernel#test method to
# generate the modification times directly.
#
# files = Dir["*"]
# sorted = files.sort { |a, b|
# test(?M, a) <=> test(?M, b)
# }
# sorted #=> ["mon", "tues", "wed", "thurs"]
#
# This still generates many unnecessary Time objects. A more efficient technique
# is to cache the sort keys (modification times in this case) before the sort.
# Perl users often call this approach a Schwartzian transform, after Randal
# Schwartz. We construct a temporary array, where each element is an array
# containing our sort key along with the filename. We sort this array, and then
# extract the filename from the result.
#
# sorted = Dir["*"].collect { |f|
# [test(?M, f), f]
# }.sort.collect { |f| f[1] }
# sorted #=> ["mon", "tues", "wed", "thurs"]
#
# This is exactly what #sort_by does internally.
#
# sorted = Dir["*"].sort_by { |f| test(?M, f) }
# sorted #=> ["mon", "tues", "wed", "thurs"]
#
# To produce the reverse of a specific order, the following can be used:
#
# ary.sort_by { ... }.reverse!
#
def sort_by: () { (Elem arg0) -> (Comparable | ::Array[untyped]) } -> ::Array[Elem]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!--
# rdoc-file=enum.c
# - take(n) -> array
# -->
# For non-negative integer `n`, returns the first `n` elements:
#
# r = (1..4)
# r.take(2) # => [1, 2]
# r.take(0) # => []
#
# h = {foo: 0, bar: 1, baz: 2, bat: 3}
# h.take(2) # => [[:foo, 0], [:bar, 1]]
#
def take: (Integer n) -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - take_while {|element| ... } -> array
# - take_while -> enumerator
# -->
# Calls the block with successive elements as long as the block returns a truthy
# value; returns an array of all elements up to that point:
#
# (1..4).take_while{|i| i < 3 } # => [1, 2]
# h = {foo: 0, bar: 1, baz: 2}
# h.take_while{|element| key, value = *element; value < 2 }
# # => [[:foo, 0], [:bar, 1]]
#
# With no block given, returns an Enumerator.
#
def take_while: () { (Elem) -> boolish } -> ::Array[Elem]
| () -> ::Enumerator[Elem, ::Array[Elem]]
# <!--
# rdoc-file=enum.c
# - to_h -> hash
# - to_h {|element| ... } -> hash
# -->
# When `self` consists of 2-element arrays, returns a hash each of whose entries
# is the key-value pair formed from one of those arrays:
#
# [[:foo, 0], [:bar, 1], [:baz, 2]].to_h # => {:foo=>0, :bar=>1, :baz=>2}
#
# When a block is given, the block is called with each element of `self`; the
# block should return a 2-element array which becomes a key-value pair in the
# returned hash:
#
# (0..3).to_h {|i| [i, i ** 2]} # => {0=>0, 1=>1, 2=>4, 3=>9}
#
# Raises an exception if an element of `self` is not a 2-element array, and a
# block is not passed.
#
def to_h: () -> ::Hash[untyped, untyped]
| [T, U] () { (Elem) -> [ T, U ] } -> ::Hash[T, U]
# <!--
# rdoc-file=enum.c
# - each_slice(n) { ... } -> self
# - each_slice(n) -> enumerator
# -->
# Calls the block with each successive disjoint `n`-tuple of elements; returns
# `self`:
#
# a = []
# (1..10).each_slice(3) {|tuple| a.push(tuple) }
# a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
#
# a = []
# h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4}
# h.each_slice(2) {|tuple| a.push(tuple) }
# a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]
#
# With no block given, returns an Enumerator.
#
def each_slice: (Integer n) { (::Array[Elem]) -> void } -> self
| (Integer n) -> ::Enumerator[::Array[Elem], self]
interface _NotFound[T]
def call: () -> T
end
# <!--
# rdoc-file=enum.c
# - find(if_none_proc = nil) {|element| ... } -> object or nil
# - find(if_none_proc = nil) -> enumerator
# -->
# Returns the first element for which the block returns a truthy value.
#
# With a block given, calls the block with successive elements of the
# collection; returns the first element for which the block returns a truthy
# value:
#
# (0..9).find {|element| element > 2} # => 3
#
# If no such element is found, calls `if_none_proc` and returns its return
# value.
#
# (0..9).find(proc {false}) {|element| element > 12} # => false
# {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
# {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
#
# With no block given, returns an Enumerator.
#
def find: () { (Elem) -> boolish } -> Elem?
| () -> ::Enumerator[Elem, Elem?]
| [T] (_NotFound[T] ifnone) { (Elem) -> boolish } -> (Elem | T)
| [T] (_NotFound[T] ifnone) -> ::Enumerator[Elem, Elem | T]
# <!--
# rdoc-file=enum.c
# - flat_map {|element| ... } -> array
# - flat_map -> enumerator
# -->
# Returns an array of flattened objects returned by the block.
#
# With a block given, calls the block with successive elements; returns a
# flattened array of objects returned by the block:
#
# [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3]
# [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3]
# [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
# {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
#
# With no block given, returns an Enumerator.
#
# Alias: #collect_concat.
#
def flat_map: [U] () { (Elem) -> (Array[U] | U) } -> Array[U]
| () -> ::Enumerator[Elem, Array[untyped]]
# <!-- rdoc-file=enum.c -->
# Returns an array of objects returned by the block.
#
# With a block given, calls the block with successive elements; returns an array
# of the objects returned by the block:
#
# (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
# {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
#
# With no block given, returns an Enumerator.
#
def map: [U] () { (Elem arg0) -> U } -> ::Array[U]
| () -> ::Enumerator[Elem, ::Array[untyped]]
# <!--
# rdoc-file=enum.c
# - include?(object) -> true or false
# -->
# Returns whether for any element `object == element`:
#
# (1..4).include?(2) # => true
# (1..4).include?(5) # => false
# (1..4).include?('2') # => false
# %w[a b c d].include?('b') # => true
# %w[a b c d].include?('2') # => false
# {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true
# {foo: 0, bar: 1, baz: 2}.include?('foo') # => false
# {foo: 0, bar: 1, baz: 2}.include?(0) # => false
#
# Enumerable#member? is an alias for Enumerable#include?.
#
def member?: (Elem arg0) -> bool
# <!-- rdoc-file=enum.c -->
# Returns an object formed from operands via either:
#
# * A method named by `symbol`.
# * A block to which each operand is passed.
#
#
# With method-name argument `symbol`, combines operands using the method:
#
# # Sum, without initial_operand.
# (1..4).inject(:+) # => 10
# # Sum, with initial_operand.
# (1..4).inject(10, :+) # => 20
#
# With a block, passes each operand to the block:
#
# # Sum of squares, without initial_operand.
# (1..4).inject {|sum, n| sum + n*n } # => 30
# # Sum of squares, with initial_operand.
# (1..4).inject(2) {|sum, n| sum + n*n } # => 32
#
# **Operands**
#
# If argument `initial_operand` is not given, the operands for `inject` are
# simply the elements of `self`. Example calls and their operands:
#
# `(1..4).inject(:+)`
# : `[1, 2, 3, 4]`.
#
# `(1...4).inject(:+)`
# : `[1, 2, 3]`.
#
# `('a'..'d').inject(:+)`
# : `['a', 'b', 'c', 'd']`.
#
# `('a'...'d').inject(:+)`
# : `['a', 'b', 'c']`.
#
#
#
# Examples with first operand (which is `self.first`) of various types:
#
# # Integer.
# (1..4).inject(:+) # => 10
# # Float.
# [1.0, 2, 3, 4].inject(:+) # => 10.0
# # Character.
# ('a'..'d').inject(:+) # => "abcd"
# # Complex.
# [Complex(1, 2), 3, 4].inject(:+) # => (8+2i)
#
# If argument `initial_operand` is given, the operands for `inject` are that
# value plus the elements of `self`. Example calls their operands:
#
# `(1..4).inject(10, :+)`
# : `[10, 1, 2, 3, 4]`.
#
# `(1...4).inject(10, :+)`
# : `[10, 1, 2, 3]`.
#
# `('a'..'d').inject('e', :+)`
# : `['e', 'a', 'b', 'c', 'd']`.
#
# `('a'...'d').inject('e', :+)`
# : `['e', 'a', 'b', 'c']`.
#
#
#
# Examples with `initial_operand` of various types:
#
# # Integer.
# (1..4).inject(2, :+) # => 12
# # Float.
# (1..4).inject(2.0, :+) # => 12.0
# # String.
# ('a'..'d').inject('foo', :+) # => "fooabcd"
# # Array.
# %w[a b c].inject(['x'], :push) # => ["x", "a", "b", "c"]
# # Complex.
# (1..4).inject(Complex(2, 2), :+) # => (12+2i)
#
# **Combination by Given \Method**
#
# If the method-name argument `symbol` is given, the operands are combined by
# that method:
#
# * The first and second operands are combined.
# * That result is combined with the third operand.
# * That result is combined with the fourth operand.
# * And so on.
#
#
# The return value from `inject` is the result of the last combination.
#
# This call to `inject` computes the sum of the operands:
#
# (1..4).inject(:+) # => 10
#
# Examples with various methods:
#
# # Integer addition.
# (1..4).inject(:+) # => 10
# # Integer multiplication.
# (1..4).inject(:*) # => 24
# # Character range concatenation.
# ('a'..'d').inject('', :+) # => "abcd"
# # String array concatenation.
# %w[foo bar baz].inject('', :+) # => "foobarbaz"
# # Hash update.
# h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update)
# h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
# # Hash conversion to nested arrays.
# h = {foo: 0, bar: 1}.inject([], :push)
# h # => [[:foo, 0], [:bar, 1]]
#
# **Combination by Given Block**
#
# If a block is given, the operands are passed to the block:
#
# * The first call passes the first and second operands.
# * The second call passes the result of the first call, along with the third
# operand.
# * The third call passes the result of the second call, along with the fourth
# operand.
# * And so on.
#
#
# The return value from `inject` is the return value from the last block call.
#
# This call to `inject` gives a block that writes the memo and element, and also
# sums the elements:
#
# (1..4).inject do |memo, element|
# p "Memo: #{memo}; element: #{element}"
# memo + element
# end # => 10
#
# Output:
#
# "Memo: 1; element: 2"
# "Memo: 3; element: 3"
# "Memo: 6; element: 4"
#
# Enumerable#reduce is an alias for Enumerable#inject.
#
alias reduce inject
# <!--
# rdoc-file=enum.c
# - to_a -> array
# -->
# Returns an array containing the items in `self`:
#
# (0..4).to_a # => [0, 1, 2, 3, 4]
#
# Enumerable#entries is an alias for Enumerable#to_a.
#
def to_a: () -> ::Array[Elem]
# <!--
# rdoc-file=enumerator.c
# - e.lazy -> lazy_enumerator
# -->
# Returns an Enumerator::Lazy, which redefines most Enumerable methods to
# postpone enumeration and enumerate values only on an as-needed basis.
#
# ### Example
#
# The following program finds pythagorean triples:
#
# def pythagorean_triples
# (1..Float::INFINITY).lazy.flat_map {|z|
# (1..z).flat_map {|x|
# (x..z).select {|y|
# x**2 + y**2 == z**2
# }.map {|y|
# [x, y, z]
# }
# }
# }
# end
# # show first ten pythagorean triples
# p pythagorean_triples.take(10).force # take is lazy, so force is needed
# p pythagorean_triples.first(10) # first is eager
# # show pythagorean triples less than 100
# p pythagorean_triples.take_while { |*, z| z < 100 }.force
#
def lazy: () -> Enumerator::Lazy[Elem, void]
# <!--
# rdoc-file=enum.c
# - uniq -> array
# - uniq {|element| ... } -> array
# -->
# With no block, returns a new array containing only unique elements; the array
# has no two elements `e0` and `e1` such that `e0.eql?(e1)`:
#
# %w[a b c c b a a b c].uniq # => ["a", "b", "c"]
# [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
#
# With a block, returns a new array containing only for which the block returns
# a unique value:
#
# a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
# a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
# a = %w[a b c d e e d c b a a b c d e]
# a.uniq {|c| c < 'c' } # => ["a", "c"]
#
def uniq: () -> ::Array[Elem]
| () { (Elem item) -> untyped } -> ::Array[Elem]
# <!--
# rdoc-file=enum.c
# - sum(initial_value = 0) -> number
# - sum(initial_value = 0) {|element| ... } -> object
# -->
# With no block given, returns the sum of `initial_value` and the elements:
#
# (1..100).sum # => 5050
# (1..100).sum(1) # => 5051
# ('a'..'d').sum('foo') # => "fooabcd"
#
# Generally, the sum is computed using methods `+` and `each`; for performance
# optimizations, those methods may not be used, and so any redefinition of those
# methods may not have effect here.
#
# One such optimization: When possible, computes using Gauss's summation formula
# *n(n+1)/2*:
#
# 100 * (100 + 1) / 2 # => 5050
#
# With a block given, calls the block with each element; returns the sum of
# `initial_value` and the block return values:
#
# (1..4).sum {|i| i*i } # => 30
# (1..4).sum(100) {|i| i*i } # => 130
# h = {a: 0, b: 1, c: 2, d: 3, e: 4, f: 5}
# h.sum {|key, value| value.odd? ? value : 0 } # => 9
# ('a'..'f').sum('x') {|c| c < 'd' ? c : '' } # => "xabc"
#
def sum: () -> (Elem | Integer)
| [T] () { (Elem arg0) -> T } -> (Integer | T)
| [T] (?T arg0) -> (Elem | T)
| [U] (?U arg0) { (Elem arg0) -> U } -> U
# <!--
# rdoc-file=enum.c
# - filter_map {|element| ... } -> array
# - filter_map -> enumerator
# -->
# Returns an array containing truthy elements returned by the block.
#
# With a block given, calls the block with successive elements; returns an array
# containing each truthy value returned by the block:
#
# (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16]
# {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]
#
# When no block given, returns an Enumerator.
#
def filter_map: [U] () { (Elem elem) -> (nil | false | U) } -> ::Array[U]
| () -> ::Enumerator[Elem, ::Array[untyped]]
# <!--
# rdoc-file=enumerator.c
# - e.chain(*enums) -> enumerator
# -->
# Returns an enumerator object generated from this enumerator and given
# enumerables.
#
# e = (1..3).chain([4, 5])
# e.to_a #=> [1, 2, 3, 4, 5]
#
def chain: (*self enumerables) -> ::Enumerator::Chain[Elem]
# <!--
# rdoc-file=enum.c
# - tally -> new_hash
# - tally(hash) -> hash
# -->
# Returns a hash containing the counts of equal elements:
#
# * Each key is an element of `self`.
# * Each value is the number elements equal to that key.
#
#
# With no argument:
#
# %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
#
# With a hash argument, that hash is used for the tally (instead of a new hash),
# and is returned; this may be useful for accumulating tallies across multiple
# enumerables:
#
# hash = {}
# hash = %w[a c d b c a].tally(hash)
# hash # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
# hash = %w[b a z].tally(hash)
# hash # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
# hash = %w[b a m].tally(hash)
# hash # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=> 1}
#
def tally: (?Hash[Elem, Integer] hash) -> ::Hash[Elem, Integer]
# <!--
# rdoc-file=enum.c
# - each_entry(*args) {|element| ... } -> self
# - each_entry(*args) -> enumerator
# -->
# Calls the given block with each element, converting multiple values from yield
# to an array; returns `self`:
#
# a = []
# (1..4).each_entry {|element| a.push(element) } # => 1..4
# a # => [1, 2, 3, 4]
#
# a = []
# h = {foo: 0, bar: 1, baz:2}
# h.each_entry {|element| a.push(element) }
# # => {:foo=>0, :bar=>1, :baz=>2}
# a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
#
# class Foo
# include Enumerable
# def each
# yield 1
# yield 1, 2
# yield
# end
# end
# Foo.new.each_entry {|yielded| p yielded }
#
# Output:
#
# 1
# [1, 2]
# nil
#
# With no block given, returns an Enumerator.
#
def each_entry: () -> ::Enumerator[Elem, self]
| () { (Elem arg0) -> untyped } -> self
# <!--
# rdoc-file=enum.c
# - zip(*other_enums) -> array
# - zip(*other_enums) {|array| ... } -> nil
# -->
# With no block given, returns a new array `new_array` of size self.size whose
# elements are arrays. Each nested array `new_array[n]` is of size
# `other_enums.size+1`, and contains:
#
# * The `n`-th element of self.
# * The `n`-th element of each of the `other_enums`.
#
#
# If all `other_enums` and self are the same size, all elements are included in
# the result, and there is no `nil`-filling:
#
# a = [:a0, :a1, :a2, :a3]
# b = [:b0, :b1, :b2, :b3]
# c = [:c0, :c1, :c2, :c3]
# d = a.zip(b, c)
# d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
#
# f = {foo: 0, bar: 1, baz: 2}
# g = {goo: 3, gar: 4, gaz: 5}
# h = {hoo: 6, har: 7, haz: 8}
# d = f.zip(g, h)
# d # => [
# # [[:foo, 0], [:goo, 3], [:hoo, 6]],
# # [[:bar, 1], [:gar, 4], [:har, 7]],
# # [[:baz, 2], [:gaz, 5], [:haz, 8]]
# # ]
#
# If any enumerable in other_enums is smaller than self, fills to `self.size`
# with `nil`:
#
# a = [:a0, :a1, :a2, :a3]
# b = [:b0, :b1, :b2]
# c = [:c0, :c1]
# d = a.zip(b, c)
# d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
#
# If any enumerable in other_enums is larger than self, its trailing elements
# are ignored:
#
# a = [:a0, :a1, :a2, :a3]
# b = [:b0, :b1, :b2, :b3, :b4]
# c = [:c0, :c1, :c2, :c3, :c4, :c5]
# d = a.zip(b, c)
# d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
#
# When a block is given, calls the block with each of the sub-arrays (formed as
# above); returns nil:
#
# a = [:a0, :a1, :a2, :a3]
# b = [:b0, :b1, :b2, :b3]
# c = [:c0, :c1, :c2, :c3]
# a.zip(b, c) {|sub_array| p sub_array} # => nil
#
# Output:
#
# [:a0, :b0, :c0]
# [:a1, :b1, :c1]
# [:a2, :b2, :c2]
# [:a3, :b3, :c3]
#
def zip: [Elem2] (::Enumerable[Elem2] enum) -> ::Array[[ Elem, Elem2 | nil ]]
| [U, Elem2] (::Enumerable[Elem2]) { ([ Elem, Elem2 | nil ]) -> U } -> nil
# <!--
# rdoc-file=enum.c
# - chunk {|array| ... } -> enumerator
# -->
# Each element in the returned enumerator is a 2-element array consisting of:
#
# * A value returned by the block.
# * An array ("chunk") containing the element for which that value was
# returned, and all following elements for which the block returned the same
# value:
#
#
# So that:
#
# * Each block return value that is different from its predecessor begins a
# new chunk.
# * Each block return value that is the same as its predecessor continues the
# same chunk.
#
#
# Example:
#
# e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
# # The enumerator elements.
# e.next # => [0, [0, 1, 2]]
# e.next # => [1, [3, 4, 5]]
# e.next # => [2, [6, 7, 8]]
# e.next # => [3, [9, 10]]
#
# Method `chunk` is especially useful for an enumerable that is already sorted.
# This example counts words for each initial letter in a large array of words:
#
# # Get sorted words from a web page.
# url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
# words = URI::open(url).readlines
# # Make chunks, one for each letter.
# e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
# # Display 'A' through 'F'.
# e.each {|c, words| p [c, words.length]; break if c == 'F' }
#
# Output:
#
# ["A", 17096]
# ["B", 11070]
# ["C", 19901]
# ["D", 10896]
# ["E", 8736]
# ["F", 6860]
#
# You can use the special symbol `:_alone` to force an element into its own
# separate chuck:
#
# a = [0, 0, 1, 1]
# e = a.chunk{|i| i.even? ? :_alone : true }
# e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]
#
# For example, you can put each line that contains a URL into its own chunk:
#
# pattern = /http/
# open(filename) { |f|
# f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
# pp lines
# }
# }
#
# You can use the special symbol `:_separator` or `nil` to force an element to
# be ignored (not included in any chunk):
#
# a = [0, 0, -1, 1, 1]
# e = a.chunk{|i| i < 0 ? :_separator : true }
# e.to_a # => [[true, [0, 0]], [true, [1, 1]]]
#
# Note that the separator does end the chunk:
#
# a = [0, 0, -1, 1, -1, 1]
# e = a.chunk{|i| i < 0 ? :_separator : true }
# e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]
#
# For example, the sequence of hyphens in svn log can be eliminated as follows:
#
# sep = "-"*72 + "\n"
# IO.popen("svn log README") { |f|
# f.chunk { |line|
# line != sep || nil
# }.each { |_, lines|
# pp lines
# }
# }
# #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
# # "\n",
# # "* README, README.ja: Update the portability section.\n",
# # "\n"]
# # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
# # "\n",
# # "* README, README.ja: Add a note about default C flags.\n",
# # "\n"]
# # ...
#
# Paragraphs separated by empty lines can be parsed as follows:
#
# File.foreach("README").chunk { |line|
# /\A\s*\z/ !~ line || nil
# }.each { |_, lines|
# pp lines
# }
#
def chunk: [U] () { (Elem elt) -> U } -> ::Enumerator[[ U, ::Array[Elem] ], void]
| () -> ::Enumerator[Elem, ::Enumerator[[ untyped, ::Array[Elem] ], void]]
# <!--
# rdoc-file=enum.c
# - chunk_while {|element, next_element| ... } -> enumerator
# -->
# The returned Enumerator uses the block to partition elements into arrays
# ("chunks"); it calls the block with each element and its successor; begins a
# new chunk if and only if the block returns a truthy value:
#
# Example:
#
# a = [1, 2, 4, 9, 10, 11, 12, 15, 16, 19, 20, 21]
# e = a.chunk_while {|i, j| j == i + 1 }
# e.each {|array| p array }
#
# Output:
#
# [1, 2]
# [4]
# [9, 10, 11, 12]
# [15, 16]
# [19, 20, 21]
#
def chunk_while: () { (Elem elt_before, Elem elt_after) -> boolish } -> ::Enumerator[::Array[Elem], void]
# <!--
# rdoc-file=enum.c
# - slice_when {|element, next_element| ... } -> enumerator
# -->
# The returned enumerator uses the block to partition elements into arrays
# ("slices"); it calls the block with each element and its successor; begins a
# new slice if and only if the block returns a truthy value:
#
# a = [0, 1, 2, 4, 5, 6, 8, 9]
# e = a.slice_when {|i, j| j != i + 1 }
# e.each {|array| p array }
#
# Output:
#
# [0, 1, 2]
# [4, 5, 6]
# [8, 9]
#
def slice_when: () { (Elem elt_before, Elem elt_after) -> boolish } -> ::Enumerator[::Array[Elem], void]
# <!--
# rdoc-file=enum.c
# - slice_after(pattern) -> enumerator
# - slice_after {|array| ... } -> enumerator
# -->
# With argument `pattern`, returns an enumerator that uses the pattern to
# partition elements into arrays ("slices"). An element ends the current slice
# if `element === pattern`:
#
# a = %w[foo bar fop for baz fob fog bam foy]
# e = a.slice_after(/ba/) # => #<Enumerator: ...>
# e.each {|array| p array }
#
# Output:
#
# ["foo", "bar"]
# ["fop", "for", "baz"]
# ["fob", "fog", "bam"]
# ["foy"]
#
# With a block, returns an enumerator that uses the block to partition elements
# into arrays. An element ends the current slice if its block return is a truthy
# value:
#
# e = (1..20).slice_after {|i| i % 4 == 2 } # => #<Enumerator: ...>
# e.each {|array| p array }
#
# Output:
#
# [1, 2]
# [3, 4, 5, 6]
# [7, 8, 9, 10]
# [11, 12, 13, 14]
# [15, 16, 17, 18]
# [19, 20]
#
# Other methods of the Enumerator class and Enumerable module, such as `map`,
# etc., are also usable.
#
# For example, continuation lines (lines end with backslash) can be concatenated
# as follows:
#
# lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
# e = lines.slice_after(/(?<!\\)\n\z/)
# p e.to_a
# #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
# p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
# #=>["foo\n", "barbaz\n", "\n", "qux\n"]
#
def slice_after: (untyped pattern) -> ::Enumerator[::Array[Elem], void]
| () { (Elem elt) -> boolish } -> ::Enumerator[::Array[Elem], void]
# <!--
# rdoc-file=enum.c
# - slice_before(pattern) -> enumerator
# - slice_before {|array| ... } -> enumerator
# -->
# With argument `pattern`, returns an enumerator that uses the pattern to
# partition elements into arrays ("slices"). An element begins a new slice if
# `element === pattern` (or if it is the first element).
#
# a = %w[foo bar fop for baz fob fog bam foy]
# e = a.slice_before(/ba/) # => #<Enumerator: ...>
# e.each {|array| p array }
#
# Output:
#
# ["foo"]
# ["bar", "fop", "for"]
# ["baz", "fob", "fog"]
# ["bam", "foy"]
#
# With a block, returns an enumerator that uses the block to partition elements
# into arrays. An element begins a new slice if its block return is a truthy
# value (or if it is the first element):
#
# e = (1..20).slice_before {|i| i % 4 == 2 } # => #<Enumerator: ...>
# e.each {|array| p array }
#
# Output:
#
# [1]
# [2, 3, 4, 5]
# [6, 7, 8, 9]
# [10, 11, 12, 13]
# [14, 15, 16, 17]
# [18, 19, 20]
#
# Other methods of the Enumerator class and Enumerable module, such as `to_a`,
# `map`, etc., are also usable.
#
# For example, iteration over ChangeLog entries can be implemented as follows:
#
# # iterate over ChangeLog entries.
# open("ChangeLog") { |f|
# f.slice_before(/\A\S/).each { |e| pp e }
# }
#
# # same as above. block is used instead of pattern argument.
# open("ChangeLog") { |f|
# f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
# }
#
# "svn proplist -R" produces multiline output for each file. They can be chunked
# as follows:
#
# IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
# f.lines.slice_before(/\AProp/).each { |lines| p lines }
# }
# #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
# # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
# # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
# # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
# # ...
#
# If the block needs to maintain state over multiple elements, local variables
# can be used. For example, three or more consecutive increasing numbers can be
# squashed as follows (see `chunk_while` for a better way):
#
# a = [0, 2, 3, 4, 6, 7, 9]
# prev = a[0]
# p a.slice_before { |e|
# prev, prev2 = e, prev
# prev2 + 1 != e
# }.map { |es|
# es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
# }.join(",")
# #=> "0,2-4,6,7,9"
#
# However local variables should be used carefully if the result enumerator is
# enumerated twice or more. The local variables should be initialized for each
# enumeration. Enumerator.new can be used to do it.
#
# # Word wrapping. This assumes all characters have same width.
# def wordwrap(words, maxwidth)
# Enumerator.new {|y|
# # cols is initialized in Enumerator.new.
# cols = 0
# words.slice_before { |w|
# cols += 1 if cols != 0
# cols += w.length
# if maxwidth < cols
# cols = w.length
# true
# else
# false
# end
# }.each {|ws| y.yield ws }
# }
# end
# text = (1..20).to_a.join(" ")
# enum = wordwrap(text.split(/\s+/), 10)
# puts "-"*10
# enum.each { |ws| puts ws.join(" ") } # first enumeration.
# puts "-"*10
# enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
# puts "-"*10
# #=> ----------
# # 1 2 3 4 5
# # 6 7 8 9 10
# # 11 12 13
# # 14 15 16
# # 17 18 19
# # 20
# # ----------
# # 1 2 3 4 5
# # 6 7 8 9 10
# # 11 12 13
# # 14 15 16
# # 17 18 19
# # 20
# # ----------
#
# mbox contains series of mails which start with Unix From line. So each mail
# can be extracted by slice before Unix From line.
#
# # parse mbox
# open("mbox") { |f|
# f.slice_before { |line|
# line.start_with? "From "
# }.each { |mail|
# unix_from = mail.shift
# i = mail.index("\n")
# header = mail[0...i]
# body = mail[(i+1)..-1]
# body.pop if body.last == "\n"
# fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
# p unix_from
# pp fields
# pp body
# }
# }
#
# # split mails in mbox (slice before Unix From line after an empty line)
# open("mbox") { |f|
# emp = true
# f.slice_before { |line|
# prevemp = emp
# emp = line == "\n"
# prevemp && line.start_with?("From ")
# }.each { |mail|
# mail.pop if mail.last == "\n"
# pp mail
# }
# }
#
def slice_before: (untyped pattern) -> ::Enumerator[::Array[Elem], void]
| () { (Elem elt) -> boolish } -> ::Enumerator[::Array[Elem], void]
end