File: //usr/lib/ruby/gems/3.2.0/gems/rbs-2.8.2/core/float.rbs
# <!-- rdoc-file=numeric.c -->
# A Float object represents a sometimes-inexact real number using the native
# architecture's double-precision floating point representation.
#
# Floating point has a different arithmetic and is an inexact number. So you
# should know its esoteric system. See following:
#
# * https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
# * https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_impre
# cise
# * https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
#
#
# You can create a Float object explicitly with:
#
# * A [floating-point
# literal](doc/syntax/literals_rdoc.html#label-Float+Literals).
#
#
# You can convert certain objects to Floats with:
#
# * Method [Float](Kernel.html#method-i-Float).
#
#
# ## What's Here
#
# First, what's elsewhere. Class Float:
#
# * Inherits from [class
# Numeric](Numeric.html#class-Numeric-label-What-27s+Here).
#
#
# Here, class Float provides methods for:
#
# * [Querying](#class-Float-label-Querying)
# * [Comparing](#class-Float-label-Comparing)
# * [Converting](#class-Float-label-Converting)
#
#
# ### Querying
#
# #finite?
# : Returns whether `self` is finite.
#
# #hash
# : Returns the integer hash code for `self`.
#
# #infinite?
# : Returns whether `self` is infinite.
#
# #nan?
# : Returns whether `self` is a NaN (not-a-number).
#
#
#
# ### Comparing
#
# [<](#method-i-3C)
# : Returns whether `self` is less than the given value.
#
# [<=](#method-i-3C-3D)
# : Returns whether `self` is less than or equal to the given value.
#
# [<=>](#method-i-3C-3D-3E)
# : Returns a number indicating whether `self` is less than, equal to, or
# greater than the given value.
#
# [==](#method-i-3D-3D) (aliased as #=== and #eql>)
# : Returns whether `self` is equal to the given value.
#
# [>](#method-i-3E)
# : Returns whether `self` is greater than the given value.
#
# [>=](#method-i-3E-3D)
# : Returns whether `self` is greater than or equal to the given value.
#
#
#
# ### Converting
#
# #% (aliased as #modulo)
# : Returns `self` modulo the given value.
#
# #*
# : Returns the product of `self` and the given value.
#
# [**](#method-i-2A-2A)
# : Returns the value of `self` raised to the power of the given value.
#
# #+
# : Returns the sum of `self` and the given value.
#
# #-
# : Returns the difference of `self` and the given value.
#
# [/](#method-i-2F)
# : Returns the quotient of `self` and the given value.
#
# #ceil
# : Returns the smallest number greater than or equal to `self`.
#
# #coerce
# : Returns a 2-element array containing the given value converted to a
# Float and `self`
#
# #divmod
# : Returns a 2-element array containing the quotient and remainder
# results of dividing `self` by the given value.
#
# #fdiv
# : Returns the Float result of dividing `self` by the given value.
#
# #floor
# : Returns the greatest number smaller than or equal to `self`.
#
# #next_float
# : Returns the next-larger representable Float.
#
# #prev_float
# : Returns the next-smaller representable Float.
#
# #quo
# : Returns the quotient from dividing `self` by the given value.
#
# #round
# : Returns `self` rounded to the nearest value, to a given precision.
#
# #to_i (aliased as #to_int)
# : Returns `self` truncated to an Integer.
#
# #to_s (aliased as #inspect)
# : Returns a string containing the place-value representation of `self`
# in the given radix.
#
# #truncate
# : Returns `self` truncated to a given precision.
#
class Float < Numeric
public
# <!--
# rdoc-file=numeric.c
# - self % other -> float
# -->
# Returns `self` modulo `other` as a float.
#
# For float `f` and real number `r`, these expressions are equivalent:
#
# f % r
# f-r*(f/r).floor
# f.divmod(r)[1]
#
# See Numeric#divmod.
#
# Examples:
#
# 10.0 % 2 # => 0.0
# 10.0 % 3 # => 1.0
# 10.0 % 4 # => 2.0
#
# 10.0 % -2 # => 0.0
# 10.0 % -3 # => -2.0
# 10.0 % -4 # => -2.0
#
# 10.0 % 4.0 # => 2.0
# 10.0 % Rational(4, 1) # => 2.0
#
# Float#modulo is an alias for Float#%.
#
def %: (Integer) -> Float
| (Float) -> Float
| (Rational) -> Float
| (Numeric) -> Numeric
# <!--
# rdoc-file=numeric.c
# - self * other -> numeric
# -->
# Returns a new Float which is the product of `self` and `other`:
#
# f = 3.14
# f * 2 # => 6.28
# f * 2.0 # => 6.28
# f * Rational(1, 2) # => 1.57
# f * Complex(2, 0) # => (6.28+0.0i)
#
def *: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - self ** other -> numeric
# -->
# Raises `self` to the power of `other`:
#
# f = 3.14
# f ** 2 # => 9.8596
# f ** -2 # => 0.1014239928597509
# f ** 2.1 # => 11.054834900588839
# f ** Rational(2, 1) # => 9.8596
# f ** Complex(2, 0) # => (9.8596+0i)
#
def **: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - self + other -> numeric
# -->
# Returns a new Float which is the sum of `self` and `other`:
#
# f = 3.14
# f + 1 # => 4.140000000000001
# f + 1.0 # => 4.140000000000001
# f + Rational(1, 1) # => 4.140000000000001
# f + Complex(1, 0) # => (4.140000000000001+0i)
#
def +: (Complex) -> Complex
| (Numeric) -> Float
def +@: () -> Float
# <!--
# rdoc-file=numeric.c
# - self - other -> numeric
# -->
# Returns a new Float which is the difference of `self` and `other`:
#
# f = 3.14
# f - 1 # => 2.14
# f - 1.0 # => 2.14
# f - Rational(1, 1) # => 2.14
# f - Complex(1, 0) # => (2.14+0i)
#
def -: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=numeric.rb
# - -float -> float
# -->
# Returns `float`, negated.
#
def -@: () -> Float
# <!--
# rdoc-file=numeric.c
# - self / other -> numeric
# -->
# Returns a new Float which is the result of dividing `self` by `other`:
#
# f = 3.14
# f / 2 # => 1.57
# f / 2.0 # => 1.57
# f / Rational(2, 1) # => 1.57
# f / Complex(2, 0) # => (1.57+0.0i)
#
def /: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - self < other -> true or false
# -->
# Returns `true` if `self` is numerically less than `other`:
#
# 2.0 < 3 # => true
# 2.0 < 3.0 # => true
# 2.0 < Rational(3, 1) # => true
# 2.0 < 2.0 # => false
#
# `Float::NAN < Float::NAN` returns an implementation-dependent value.
#
def <: (Numeric) -> bool
# <!--
# rdoc-file=numeric.c
# - self <= other -> true or false
# -->
# Returns `true` if `self` is numerically less than or equal to `other`:
#
# 2.0 <= 3 # => true
# 2.0 <= 3.0 # => true
# 2.0 <= Rational(3, 1) # => true
# 2.0 <= 2.0 # => true
# 2.0 <= 1.0 # => false
#
# `Float::NAN <= Float::NAN` returns an implementation-dependent value.
#
def <=: (Numeric) -> bool
# <!--
# rdoc-file=numeric.c
# - self <=> other -> -1, 0, +1, or nil
# -->
# Returns a value that depends on the numeric relation between `self` and
# `other`:
#
# * -1, if `self` is less than `other`.
# * 0, if `self` is equal to `other`.
# * 1, if `self` is greater than `other`.
# * `nil`, if the two values are incommensurate.
#
#
# Examples:
#
# 2.0 <=> 2 # => 0
# 2.0 <=> 2.0 # => 0
# 2.0 <=> Rational(2, 1) # => 0
# 2.0 <=> Complex(2, 0) # => 0
# 2.0 <=> 1.9 # => 1
# 2.0 <=> 2.1 # => -1
# 2.0 <=> 'foo' # => nil
#
# This is the basis for the tests in the Comparable module.
#
# `Float::NAN <=> Float::NAN` returns an implementation-dependent value.
#
def <=>: (Numeric) -> Integer?
# <!--
# rdoc-file=numeric.c
# - self == other -> true or false
# -->
# Returns `true` if `other` has the same value as `self`, `false` otherwise:
#
# 2.0 == 2 # => true
# 2.0 == 2.0 # => true
# 2.0 == Rational(2, 1) # => true
# 2.0 == Complex(2, 0) # => true
#
# `Float::NAN == Float::NAN` returns an implementation-dependent value.
#
# Related: Float#eql? (requires `other` to be a Float).
#
def ==: (untyped) -> bool
# <!-- rdoc-file=numeric.c -->
# Returns `true` if `other` has the same value as `self`, `false` otherwise:
#
# 2.0 == 2 # => true
# 2.0 == 2.0 # => true
# 2.0 == Rational(2, 1) # => true
# 2.0 == Complex(2, 0) # => true
#
# `Float::NAN == Float::NAN` returns an implementation-dependent value.
#
# Related: Float#eql? (requires `other` to be a Float).
#
def ===: (untyped) -> bool
# <!--
# rdoc-file=numeric.c
# - self > other -> true or false
# -->
# Returns `true` if `self` is numerically greater than `other`:
#
# 2.0 > 1 # => true
# 2.0 > 1.0 # => true
# 2.0 > Rational(1, 2) # => true
# 2.0 > 2.0 # => false
#
# `Float::NAN > Float::NAN` returns an implementation-dependent value.
#
def >: (Numeric) -> bool
# <!--
# rdoc-file=numeric.c
# - self >= other -> true or false
# -->
# Returns `true` if `self` is numerically greater than or equal to `other`:
#
# 2.0 >= 1 # => true
# 2.0 >= 1.0 # => true
# 2.0 >= Rational(1, 2) # => true
# 2.0 >= 2.0 # => true
# 2.0 >= 2.1 # => false
#
# `Float::NAN >= Float::NAN` returns an implementation-dependent value.
#
def >=: (Numeric) -> bool
# <!--
# rdoc-file=numeric.rb
# - float.abs -> float
# - float.magnitude -> float
# -->
# Returns the absolute value of `float`.
#
# (-34.56).abs #=> 34.56
# -34.56.abs #=> 34.56
# 34.56.abs #=> 34.56
#
# Float#magnitude is an alias for Float#abs.
#
def abs: () -> Float
def abs2: () -> Float
# <!-- rdoc-file=complex.c -->
# Returns 0 if the value is positive, pi otherwise.
#
def angle: () -> (Integer | Float)
# <!--
# rdoc-file=complex.c
# - flo.arg -> 0 or float
# - flo.angle -> 0 or float
# - flo.phase -> 0 or float
# -->
# Returns 0 if the value is positive, pi otherwise.
#
alias arg angle
# <!--
# rdoc-file=numeric.c
# - ceil(ndigits = 0) -> float or integer
# -->
# Returns the smallest number greater than or equal to `self` with a precision
# of `ndigits` decimal digits.
#
# When `ndigits` is positive, returns a float with `ndigits` digits after the
# decimal point (as available):
#
# f = 12345.6789
# f.ceil(1) # => 12345.7
# f.ceil(3) # => 12345.679
# f = -12345.6789
# f.ceil(1) # => -12345.6
# f.ceil(3) # => -12345.678
#
# When `ndigits` is non-positive, returns an integer with at least `ndigits.abs`
# trailing zeros:
#
# f = 12345.6789
# f.ceil(0) # => 12346
# f.ceil(-3) # => 13000
# f = -12345.6789
# f.ceil(0) # => -12345
# f.ceil(-3) # => -12000
#
# Note that the limited precision of floating-point arithmetic may lead to
# surprising results:
#
# (2.1 / 0.7).ceil #=> 4 (!)
#
# Related: Float#floor.
#
def ceil: () -> Integer
| (int digits) -> (Integer | Float)
# <!--
# rdoc-file=numeric.c
# - coerce(other) -> array
# -->
# Returns a 2-element array containing `other` converted to a Float and `self`:
#
# f = 3.14 # => 3.14
# f.coerce(2) # => [2.0, 3.14]
# f.coerce(2.0) # => [2.0, 3.14]
# f.coerce(Rational(1, 2)) # => [0.5, 3.14]
# f.coerce(Complex(1, 0)) # => [1.0, 3.14]
#
# Raises an exception if a type conversion fails.
#
def coerce: (Numeric) -> [ Float, Float ]
def conj: () -> Float
def conjugate: () -> Float
# <!--
# rdoc-file=rational.c
# - flo.denominator -> integer
# -->
# Returns the denominator (always positive). The result is machine dependent.
#
# See also Float#numerator.
#
def denominator: () -> Integer
def div: (Numeric) -> Integer
# <!--
# rdoc-file=numeric.c
# - divmod(other) -> array
# -->
# Returns a 2-element array `[q, r]`, where
#
# q = (self/other).floor # Quotient
# r = self % other # Remainder
#
# Examples:
#
# 11.0.divmod(4) # => [2, 3.0]
# 11.0.divmod(-4) # => [-3, -1.0]
# -11.0.divmod(4) # => [-3, 1.0]
# -11.0.divmod(-4) # => [2, -3.0]
#
# 12.0.divmod(4) # => [3, 0.0]
# 12.0.divmod(-4) # => [-3, 0.0]
# -12.0.divmod(4) # => [-3, -0.0]
# -12.0.divmod(-4) # => [3, -0.0]
#
# 13.0.divmod(4.0) # => [3, 1.0]
# 13.0.divmod(Rational(4, 1)) # => [3, 1.0]
#
def divmod: (Numeric) -> [ Numeric, Numeric ]
def dup: () -> self
# <!--
# rdoc-file=numeric.c
# - eql?(other) -> true or false
# -->
# Returns `true` if `other` is a Float with the same value as `self`, `false`
# otherwise:
#
# 2.0.eql?(2.0) # => true
# 2.0.eql?(1.0) # => false
# 2.0.eql?(1) # => false
# 2.0.eql?(Rational(2, 1)) # => false
# 2.0.eql?(Complex(2, 0)) # => false
#
# `Float::NAN.eql?(Float::NAN)` returns an implementation-dependent value.
#
# Related: Float#== (performs type conversions).
#
def eql?: (untyped) -> bool
# <!-- rdoc-file=numeric.c -->
# Returns the quotient from dividing `self` by `other`:
#
# f = 3.14
# f.quo(2) # => 1.57
# f.quo(-2) # => -1.57
# f.quo(Rational(2, 1)) # => 1.57
# f.quo(Complex(2, 0)) # => (1.57+0.0i)
#
# Float#fdiv is an alias for Float#quo.
#
def fdiv: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - finite? -> true or false
# -->
# Returns `true` if `self` is not `Infinity`, `-Infinity`, or `Nan`, `false`
# otherwise:
#
# f = 2.0 # => 2.0
# f.finite? # => true
# f = 1.0/0.0 # => Infinity
# f.finite? # => false
# f = -1.0/0.0 # => -Infinity
# f.finite? # => false
# f = 0.0/0.0 # => NaN
# f.finite? # => false
#
def finite?: () -> bool
# <!--
# rdoc-file=numeric.c
# - floor(ndigits = 0) -> float or integer
# -->
# Returns the largest number less than or equal to `self` with a precision of
# `ndigits` decimal digits.
#
# When `ndigits` is positive, returns a float with `ndigits` digits after the
# decimal point (as available):
#
# f = 12345.6789
# f.floor(1) # => 12345.6
# f.floor(3) # => 12345.678
# f = -12345.6789
# f.floor(1) # => -12345.7
# f.floor(3) # => -12345.679
#
# When `ndigits` is non-positive, returns an integer with at least `ndigits.abs`
# trailing zeros:
#
# f = 12345.6789
# f.floor(0) # => 12345
# f.floor(-3) # => 12000
# f = -12345.6789
# f.floor(0) # => -12346
# f.floor(-3) # => -13000
#
# Note that the limited precision of floating-point arithmetic may lead to
# surprising results:
#
# (0.3 / 0.1).floor #=> 2 (!)
#
# Related: Float#ceil.
#
def floor: () -> Integer
| (int digits) -> (Integer | Numeric)
# <!--
# rdoc-file=numeric.c
# - hash -> integer
# -->
# Returns the integer hash value for `self`.
#
# See also Object#hash.
#
def hash: () -> Integer
def i: () -> Complex
def imag: () -> Integer
def imaginary: () -> Integer
# <!--
# rdoc-file=numeric.c
# - infinite? -> -1, 1, or nil
# -->
# Returns:
#
# * 1, if `self` is `Infinity`.
# * -1 if `self` is `-Infinity`.
# * `nil`, otherwise.
#
#
# Examples:
#
# f = 1.0/0.0 # => Infinity
# f.infinite? # => 1
# f = -1.0/0.0 # => -Infinity
# f.infinite? # => -1
# f = 1.0 # => 1.0
# f.infinite? # => nil
# f = 0.0/0.0 # => NaN
# f.infinite? # => nil
#
def infinite?: () -> Integer?
# <!-- rdoc-file=numeric.c -->
# Returns a string containing a representation of `self`; depending of the value
# of `self`, the string representation may contain:
#
# * A fixed-point number.
# * A number in "scientific notation" (containing an exponent).
# * 'Infinity'.
# * '-Infinity'.
# * 'NaN' (indicating not-a-number).
#
# 3.14.to_s # => "3.14" (10.1**50).to_s # =>
# "1.644631821843879e+50" (10.1**500).to_s # => "Infinity"
# (-10.1**500).to_s # => "-Infinity" (0.0/0.0).to_s # => "NaN"
#
alias inspect to_s
def integer?: () -> bool
# <!--
# rdoc-file=numeric.rb
# - magnitude()
# -->
#
alias magnitude abs
# <!-- rdoc-file=numeric.c -->
# Returns `self` modulo `other` as a float.
#
# For float `f` and real number `r`, these expressions are equivalent:
#
# f % r
# f-r*(f/r).floor
# f.divmod(r)[1]
#
# See Numeric#divmod.
#
# Examples:
#
# 10.0 % 2 # => 0.0
# 10.0 % 3 # => 1.0
# 10.0 % 4 # => 2.0
#
# 10.0 % -2 # => 0.0
# 10.0 % -3 # => -2.0
# 10.0 % -4 # => -2.0
#
# 10.0 % 4.0 # => 2.0
# 10.0 % Rational(4, 1) # => 2.0
#
# Float#modulo is an alias for Float#%.
#
def modulo: (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - nan? -> true or false
# -->
# Returns `true` if `self` is a NaN, `false` otherwise.
#
# f = -1.0 #=> -1.0
# f.nan? #=> false
# f = 0.0/0.0 #=> NaN
# f.nan? #=> true
#
def nan?: () -> bool
# <!--
# rdoc-file=numeric.rb
# - float.negative? -> true or false
# -->
# Returns `true` if `float` is less than 0.
#
def negative?: () -> bool
# <!--
# rdoc-file=numeric.c
# - next_float -> float
# -->
# Returns the next-larger representable Float.
#
# These examples show the internally stored values (64-bit hexadecimal) for each
# Float `f` and for the corresponding `f.next_float`:
#
# f = 0.0 # 0x0000000000000000
# f.next_float # 0x0000000000000001
#
# f = 0.01 # 0x3f847ae147ae147b
# f.next_float # 0x3f847ae147ae147c
#
# In the remaining examples here, the output is shown in the usual way (result
# `to_s`):
#
# 0.01.next_float # => 0.010000000000000002
# 1.0.next_float # => 1.0000000000000002
# 100.0.next_float # => 100.00000000000001
#
# f = 0.01
# (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
#
# Output:
#
# 0 0x1.47ae147ae147bp-7 0.01
# 1 0x1.47ae147ae147cp-7 0.010000000000000002
# 2 0x1.47ae147ae147dp-7 0.010000000000000004
# 3 0x1.47ae147ae147ep-7 0.010000000000000005
#
# f = 0.0; 100.times { f += 0.1 }
# f # => 9.99999999999998 # should be 10.0 in the ideal world.
# 10-f # => 1.9539925233402755e-14 # the floating point error.
# 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
# (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp.
# (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above.
# "%a" % 10 # => "0x1.4p+3"
# "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
#
# Related: Float#prev_float
#
def next_float: () -> Float
def nonzero?: () -> self?
# <!--
# rdoc-file=rational.c
# - flo.numerator -> integer
# -->
# Returns the numerator. The result is machine dependent.
#
# n = 0.3.numerator #=> 5404319552844595
# d = 0.3.denominator #=> 18014398509481984
# n.fdiv(d) #=> 0.3
#
# See also Float#denominator.
#
def numerator: () -> Integer
# <!-- rdoc-file=complex.c -->
# Returns 0 if the value is positive, pi otherwise.
#
alias phase angle
def polar: () -> [ Float, Integer | Float ]
# <!--
# rdoc-file=numeric.rb
# - float.positive? -> true or false
# -->
# Returns `true` if `float` is greater than 0.
#
def positive?: () -> bool
# <!--
# rdoc-file=numeric.c
# - float.prev_float -> float
# -->
# Returns the next-smaller representable Float.
#
# These examples show the internally stored values (64-bit hexadecimal) for each
# Float `f` and for the corresponding `f.pev_float`:
#
# f = 5e-324 # 0x0000000000000001
# f.prev_float # 0x0000000000000000
#
# f = 0.01 # 0x3f847ae147ae147b
# f.prev_float # 0x3f847ae147ae147a
#
# In the remaining examples here, the output is shown in the usual way (result
# `to_s`):
#
# 0.01.prev_float # => 0.009999999999999998
# 1.0.prev_float # => 0.9999999999999999
# 100.0.prev_float # => 99.99999999999999
#
# f = 0.01
# (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
#
# Output:
#
# 0 0x1.47ae147ae147bp-7 0.01
# 1 0x1.47ae147ae147ap-7 0.009999999999999998
# 2 0x1.47ae147ae1479p-7 0.009999999999999997
# 3 0x1.47ae147ae1478p-7 0.009999999999999995
#
# Related: Float#next_float.
#
def prev_float: () -> Float
# <!--
# rdoc-file=numeric.c
# - quo(other) -> numeric
# -->
# Returns the quotient from dividing `self` by `other`:
#
# f = 3.14
# f.quo(2) # => 1.57
# f.quo(-2) # => -1.57
# f.quo(Rational(2, 1)) # => 1.57
# f.quo(Complex(2, 0)) # => (1.57+0.0i)
#
# Float#fdiv is an alias for Float#quo.
#
def quo: (Complex) -> Complex
| (Numeric) -> Float
# <!--
# rdoc-file=rational.c
# - flt.rationalize([eps]) -> rational
# -->
# Returns a simpler approximation of the value (flt-|eps| <= result <=
# flt+|eps|). If the optional argument `eps` is not given, it will be chosen
# automatically.
#
# 0.3.rationalize #=> (3/10)
# 1.333.rationalize #=> (1333/1000)
# 1.333.rationalize(0.01) #=> (4/3)
#
# See also Float#to_r.
#
def rationalize: (?Numeric eps) -> Rational
def real: () -> Float
def real?: () -> true
def rect: () -> [ Float, Numeric ]
alias rectangular rect
def remainder: (Numeric) -> Float
# <!--
# rdoc-file=numeric.c
# - round(ndigits = 0, half: :up]) -> integer or float
# -->
# Returns `self` rounded to the nearest value with a precision of `ndigits`
# decimal digits.
#
# When `ndigits` is non-negative, returns a float with `ndigits` after the
# decimal point (as available):
#
# f = 12345.6789
# f.round(1) # => 12345.7
# f.round(3) # => 12345.679
# f = -12345.6789
# f.round(1) # => -12345.7
# f.round(3) # => -12345.679
#
# When `ndigits` is negative, returns an integer with at least `ndigits.abs`
# trailing zeros:
#
# f = 12345.6789
# f.round(0) # => 12346
# f.round(-3) # => 12000
# f = -12345.6789
# f.round(0) # => -12346
# f.round(-3) # => -12000
#
# If keyword argument `half` is given, and `self` is equidistant from the two
# candidate values, the rounding is according to the given `half` value:
#
# * `:up` or `nil`: round away from zero:
#
# 2.5.round(half: :up) # => 3
# 3.5.round(half: :up) # => 4
# (-2.5).round(half: :up) # => -3
#
# * `:down`: round toward zero:
#
# 2.5.round(half: :down) # => 2
# 3.5.round(half: :down) # => 3
# (-2.5).round(half: :down) # => -2
#
# * `:even`: round toward the candidate whose last nonzero digit is even:
#
# 2.5.round(half: :even) # => 2
# 3.5.round(half: :even) # => 4
# (-2.5).round(half: :even) # => -2
#
#
# Raises and exception if the value for `half` is invalid.
#
# Related: Float#truncate.
#
def round: (?half: :up | :down | :even) -> Integer
| (int digits, ?half: :up | :down | :even) -> (Integer | Float)
def step: (?Numeric limit, ?Numeric step) { (Float) -> void } -> self
| (?Numeric limit, ?Numeric step) -> Enumerator[Float, self]
| (?by: Numeric, ?to: Numeric) { (Float) -> void } -> self
| (?by: Numeric, ?to: Numeric) -> Enumerator[Float, self]
def to_c: () -> Complex
# <!--
# rdoc-file=numeric.rb
# - float.to_f -> self
# -->
# Since `float` is already a Float, returns `self`.
#
def to_f: () -> Float
# <!--
# rdoc-file=numeric.c
# - to_i -> integer
# -->
# Returns `self` truncated to an Integer.
#
# 1.2.to_i # => 1
# (-1.2).to_i # => -1
#
# Note that the limited precision of floating-point arithmetic may lead to
# surprising results:
#
# (0.3 / 0.1).to_i # => 2 (!)
#
# Float#to_int is an alias for Float#to_i.
#
def to_i: () -> Integer
# <!-- rdoc-file=numeric.c -->
# Returns `self` truncated to an Integer.
#
# 1.2.to_i # => 1
# (-1.2).to_i # => -1
#
# Note that the limited precision of floating-point arithmetic may lead to
# surprising results:
#
# (0.3 / 0.1).to_i # => 2 (!)
#
# Float#to_int is an alias for Float#to_i.
#
alias to_int to_i
# <!--
# rdoc-file=rational.c
# - flt.to_r -> rational
# -->
# Returns the value as a rational.
#
# 2.0.to_r #=> (2/1)
# 2.5.to_r #=> (5/2)
# -0.75.to_r #=> (-3/4)
# 0.0.to_r #=> (0/1)
# 0.3.to_r #=> (5404319552844595/18014398509481984)
#
# NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is equivalent to
# "3/10".to_r, but the former isn't so.
#
# 0.3.to_r == 3/10r #=> false
# "0.3".to_r == 3/10r #=> true
#
# See also Float#rationalize.
#
def to_r: () -> Rational
# <!--
# rdoc-file=numeric.c
# - to_s -> string
# -->
# Returns a string containing a representation of `self`; depending of the value
# of `self`, the string representation may contain:
#
# * A fixed-point number.
# * A number in "scientific notation" (containing an exponent).
# * 'Infinity'.
# * '-Infinity'.
# * 'NaN' (indicating not-a-number).
#
# 3.14.to_s # => "3.14" (10.1**50).to_s # =>
# "1.644631821843879e+50" (10.1**500).to_s # => "Infinity"
# (-10.1**500).to_s # => "-Infinity" (0.0/0.0).to_s # => "NaN"
#
def to_s: () -> String
# <!--
# rdoc-file=numeric.c
# - truncate(ndigits = 0) -> float or integer
# -->
# Returns `self` truncated (toward zero) to a precision of `ndigits` decimal
# digits.
#
# When `ndigits` is positive, returns a float with `ndigits` digits after the
# decimal point (as available):
#
# f = 12345.6789
# f.truncate(1) # => 12345.6
# f.truncate(3) # => 12345.678
# f = -12345.6789
# f.truncate(1) # => -12345.6
# f.truncate(3) # => -12345.678
#
# When `ndigits` is negative, returns an integer with at least `ndigits.abs`
# trailing zeros:
#
# f = 12345.6789
# f.truncate(0) # => 12345
# f.truncate(-3) # => 12000
# f = -12345.6789
# f.truncate(0) # => -12345
# f.truncate(-3) # => -12000
#
# Note that the limited precision of floating-point arithmetic may lead to
# surprising results:
#
# (0.3 / 0.1).truncate #=> 2 (!)
#
# Related: Float#round.
#
def truncate: () -> Integer
| (Integer ndigits) -> (Integer | Float)
# <!--
# rdoc-file=numeric.rb
# - float.zero? -> true or false
# -->
# Returns `true` if `float` is 0.0.
#
def zero?: () -> bool
end
# <!-- rdoc-file=numeric.c -->
# The minimum number of significant decimal digits in a double-precision
# floating point.
#
# Usually defaults to 15.
#
Float::DIG: Integer
# <!-- rdoc-file=numeric.c -->
# The difference between 1 and the smallest double-precision floating point
# number greater than 1.
#
# Usually defaults to 2.2204460492503131e-16.
#
Float::EPSILON: Float
# <!-- rdoc-file=numeric.c -->
# An expression representing positive infinity.
#
Float::INFINITY: Float
Float::Infinity: Float
# <!-- rdoc-file=numeric.c -->
# The number of base digits for the `double` data type.
#
# Usually defaults to 53.
#
Float::MANT_DIG: Integer
# <!-- rdoc-file=numeric.c -->
# The largest possible integer in a double-precision floating point number.
#
# Usually defaults to 1.7976931348623157e+308.
#
Float::MAX: Float
# <!-- rdoc-file=numeric.c -->
# The largest positive exponent in a double-precision floating point where 10
# raised to this power minus 1.
#
# Usually defaults to 308.
#
Float::MAX_10_EXP: Integer
# <!-- rdoc-file=numeric.c -->
# The largest possible exponent value in a double-precision floating point.
#
# Usually defaults to 1024.
#
Float::MAX_EXP: Integer
# <!-- rdoc-file=numeric.c -->
# The smallest positive normalized number in a double-precision floating point.
#
# Usually defaults to 2.2250738585072014e-308.
#
# If the platform supports denormalized numbers, there are numbers between zero
# and Float::MIN. 0.0.next_float returns the smallest positive floating point
# number including denormalized numbers.
#
Float::MIN: Float
# <!-- rdoc-file=numeric.c -->
# The smallest negative exponent in a double-precision floating point where 10
# raised to this power minus 1.
#
# Usually defaults to -307.
#
Float::MIN_10_EXP: Integer
# <!-- rdoc-file=numeric.c -->
# The smallest possible exponent value in a double-precision floating point.
#
# Usually defaults to -1021.
#
Float::MIN_EXP: Integer
# <!-- rdoc-file=numeric.c -->
# An expression representing a value which is "not a number".
#
Float::NAN: Float
# <!-- rdoc-file=numeric.c -->
# The base of the floating point, or number of unique digits used to represent
# the number.
#
# Usually defaults to 2 on most systems, which would represent a base-10
# decimal.
#
Float::RADIX: Integer
# Deprecated, do not use.
#
# Represents the rounding mode for floating point addition at the start time.
#
# Usually defaults to 1, rounding to the nearest number.
#
# Other modes include:
#
# -1
# : Indeterminable
# 0
# : Rounding towards zero
# 1
# : Rounding to the nearest number
# 2
# : Rounding towards positive infinity
# 3
# : Rounding towards negative infinity
#
#
Float::ROUNDS: Integer